(本小题满分14分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球。现从甲、乙两个盒内各任取2个球。(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望
(本小题满分14分) 已知条件: 条件: (Ⅰ)若,求实数的值; (Ⅱ)若是的充分条件,求实数的取值范围.
.(本小题满分14分)已知定义在上的奇函数满足,且对任意有. (Ⅰ)判断在上的奇偶性,并加以证明. (Ⅱ)令,,求数列的通项公式. (Ⅲ)设为的前项和,若对恒成立,求的最大值.
(本小题满分14分)设函数,其中 (Ⅰ)当判断在上的单调性. (Ⅱ)讨论的极值点.
(本小题满分14分)在平面直角坐标系中,设点,直线:,点在直线上移动,是线段与轴的交点, . (I)求动点的轨迹的方程; (II)设圆过,且圆心在曲线上, 设圆过,且圆心在曲线上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
(本小题满分14分)如图,为等边三角形,为矩形,平面平面,,分别为、、中点,与底面成角. (Ⅰ)求证: (Ⅱ)求二面角的正切.