已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn﹣1,xi∈M,i=1,2,…n}.
(Ⅰ)当q=2,n=3时,用列举法表示集合A;
(Ⅱ)设s,t∈A,s=a1+a2q+…+anqn﹣1,t=b1+b2q+…+bnqn﹣1,其中ai,bi∈M,i=1,2,...,n.证明:若an<bn,则s<t.
(本小题10分) 已知函数. (Ⅰ)求函数f(x)的最小正周期; (Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足,求f(B)的取值范围.
(本小题满分12分)已知函数其中为常数,函数和的图象在它们与坐标轴交点的切线互相平行. (1)求函数的单调区间; (2)若不等式在区间上恒成立,求实数的取值范围.
(本小题满分12分)已知,动点满足,设的轨迹为曲线. (1)求曲线的方程; (2)过的直线与曲线交于、两点,过与平行的直线与曲线交于、两点,求四边形的面积的最大值.
(本小题满分12分)如图,在三棱锥中,底面为直角三角形,且,底面,且,点是的中点,且交于点. (1)求证:平面; (2)当时,求二面角的余弦值.
(本小题满分12分)某工厂生产、两种元件,某质量按测试指标划分,指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下: (1)试依据以频率估计概率的统计思想,分别估计元件,元件为正品的概率; (2)生产一件元件,若是正品可盈利40元,若是次品则亏损5元;生产一件元件,若是正品可盈利50元,若是次品则亏损10元,在(1)的前提下: (i)记为生产一件元件和1件元件所得的总利润,求随机变量的分布列和数学期望; (ii)求生产5件元件所获得的利润不少于140元的概率.