已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn﹣1,xi∈M,i=1,2,…n}.
(Ⅰ)当q=2,n=3时,用列举法表示集合A;
(Ⅱ)设s,t∈A,s=a1+a2q+…+anqn﹣1,t=b1+b2q+…+bnqn﹣1,其中ai,bi∈M,i=1,2,...,n.证明:若an<bn,则s<t.
已知椭圆C1: x 2 a 2 + y 2 b 2 = 1 (a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|= 4 3 |AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得 ∑ i = 1 20 x i = 60 , ∑ i = 1 20 y i = 1200 , ∑ i = 1 20 ( x i - x ̄ ) 2 = 80 , ∑ i = 1 20 ( y i - y ̄ ) 2 = 9000 , ∑ i = 1 20 ( x i - x ̄ ) ( y i - y ̄ ) = 800 .
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r= ∑ i = 1 n ( x i - x ̄ ) ( y i - y ̄ ) ∑ i = 1 n ( x i - x ̄ ) 2 ∑ i = 1 n ( y i - y ̄ ) 2 ,≈1.414.
△ABC的内角A,B,C的对边分别为a,b,c,已知 cos 2 ( π 2 + A ) + cos A = 5 4 .
(1)求A;
(2)若 b - c = 3 3 a ,证明:△ABC是直角三角形.
设 a, b, c ∈ R, a+ b+ c=0, abc=1.
(1)证明: ab+ bc+ ca<0;
(2)用max{ a, b, c}表示 a, b, c中的最大值,证明:max{ a, b, c}≥ 4 3 .
在直角坐标系 xOy中,曲线 C的参数方程为 x = 2 - t - t 2 , y = 2 - 3 t + t 2 ( t为参数且 t≠1), C与坐标轴交于 A, B两点.
(1)求| AB |:
(2)以坐标原点为极点, x轴正半轴为极轴建立极坐标系,求直线 AB的极坐标方程.