已知抛物线的焦点到准线的距离为.过点作直线交抛物线与两点(在第一象限内).(1)若与焦点重合,且.求直线的方程;(2)设关于轴的对称点为.直线交轴于. 且.求点到直线的距离的取值范围.
是否存在这样的实数k,使得关于x的方程2+(2k-3)-(3k-1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k的取值范围;如果没有,试说明理由.
试确定方程最小根所在的区间,并使区间两个端点是两个连续的整数.
设函数 (Ⅰ)若, ( i )求的值; ( ii)在 (Ⅱ)当上是单调函数,求的取值范围。 (参考数据
已知直线为曲线在点(1,0)处的切线,直线为该曲线的另一条切线,且的斜率为1. (Ⅰ)求直线、的方程 (Ⅱ)求由直线、和x轴所围成的三角形面积。
求由抛物线与过焦点的弦所围成的图形面积的最小值.