设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点为 F 1 , F 2 ,右顶点为 A ,上顶点为 B .已知 A B = 3 2 F 1 F 2 . (1)求椭圆的离心率; (2)设 P 为椭圆上异于其顶点的一点,以线段 P B 为直径的圆经过点 F 1 ,经过原点 O 的直线 l 与该圆相切,求直线 l 的斜率.
(12分)设是奇函数,(a,b,c∈Z),且f(1)=2,f(2)<3,求a,b,c的值。
.(12分)如图,在Rt△ABC中,∠C=90º,BE平分∠ABC交AC于点E,点D在AB上, DE⊥EB (1)求证:AC是△BDE的外接圆的切线; (2)若AD=6,AE=6,求BC的长。
(12分) 某制造商发现饮料瓶大小对饮料公司的利润有影响,于是该公司设计下面问题,问瓶子的半径多大时,能够使每瓶的饮料利润最大?瓶子的半径多大时,能使饮料的利润最小? 问题:若饮料瓶是球形瓶装, 球形瓶子的制造成本是分,其中r(单位:cm)是瓶子的半径.已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为5cm.
(12分)如图,矩形ABCD中,E是BC中点,DF⊥AE交AE延长线于F,AB="a" ,BC=b, 求证:DF=
(12分)已知A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若A∪B=A,求m的取值范围。