(本小题满分12分)已知抛物线C:过点A (1 , -2)。(1)求抛物线C 的方程;(2)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由。
(本小题满分14分)如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=600,E为AB中点,二面角A1-ED-A为600 (I)求证:平面A1ED⊥平面ABB1A1; (II)求二面角A1-ED-C1的余弦值; (III)求点C1到平面A1ED的距离。
(本小题满分12分) (I)求向量; (II)若映射 ①求映射f下(1,2)原象; ②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由
(本小题满分14分)数列 (1)若数列 (2)求数列的通项公式 (3)数列适合条件的项;若不存在,请说明理由
(本小题满分12分)在△ABC中,已知且求的值。
(本小题满分12分) 已知函数, (1)若为的极值点,求的值; (2)若的图象在点(1,)处的切线方程为,求在区间[-2, 4]上的最大值。 (3)当时,若在区间(-1,1)上不单调,求的取值范围。