已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点不重合.(1)求椭圆的方程;(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
设函数(1)求不等式的解集;(2)若关于的不等式在上无解,求实数的取值范围
已知在直角坐标系xOy中,曲线C的参数方程为(为参数),直线经过定点P(3,5),倾斜角为(1)写出直线的参数方程和曲线C的标准方程;(2)设直线与曲线C相交于A、B两点,求的值
如图,PA、PB是圆O的两条切线,A、B是切点,C是劣弧AB(不包括端点)上一点,直线PC交圆O于另一点D,Q在弦CD上,且求证:(1);(2)∽
已知函数(e为自然对数的底数)(1)求函数的单调区间;(2)设函数,存在实数,使得成立,求实数的取值范围
椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形(1)求椭圆M的方程;(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值