设函数(1)求不等式的解集;(2)若关于的不等式在上无解,求实数的取值范围
如图,四棱锥 P-ABCD 中,底面 ABCD 为矩形, PA⊥ 平面 ABCD , E 是 PD 的中点. (1)证明: PB //平面 AEC ; (2)设 AP=1,AD= 3 ,三棱锥 P-ABD 的体积 V= 3 4 ,求 A 到平面 PBC 的距离.
四边形 A B C D 的内角 A 与 C 互补, A B = 1 , B C = 3 , C D = D A = 2 . (1)求 C 和 B D ; (2)求四边形 A B C D 的面积.
设函数 f x =2 x - 1 +x-1,g x =16x2-8x+1 ,记 f x ≤1 的解集为 M , g x ≤4 的解集为 N . (1)求 M ; (2)当 x∈M∩N 时,证明: x2f x +x f x 2≤ 1 4 .
将圆 x2+y2=1 上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线 C . (1)写出 C 的参数方程; (2)设直线 l:2x+y-2=0 与 C 的交点为 P 1 , P 2 ,以坐标原点为极点, x 轴正半轴为极坐标建立极坐标系,求过线段 P 1 P 2 的中点且与 l 垂直的直线的极坐标方程.
如图, EP 交圆于 E 、 C 两点, PD 切圆于 D,G 为 CE 上一点且 PG=PD ,连接 DG 并延长交圆于点 A ,作弦 AB 垂直 EP ,垂足为 F .
(1)求证: AB 为圆的直径; (2)若 AC=BD ,求证: AB=ED .