(本小题满分12分)已知△的周长为,且.(1)求边长的值;(2)若,求角A的余弦值.
已知圆,直线(1)求证:对,直线与圆总有两个不同的交点A、B;(2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;
如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.(1)求直线与平面所成角的余弦值;(2)求点到平面的距离;(3)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
如图所示,正三棱柱的底面边长与侧棱长均为,为中点.(1)求证:∥平面;(2)求直线与平面所成的角的正弦值.
直线与坐标轴的交点是圆一条直径的两端点.(1)求圆的方程;(2)圆的弦长度为且过点,求弦所在直线的方程.
已知直三棱柱的所有棱长都相等,且分别为的中点.(1)求证:平面平面;(2)求证:平面C平面.