已知向量,,其中,设,且函数的最大值为.。(Ⅰ)求函数的解析式。(Ⅱ)设,求函数的最大值和最小值以及对应的值。
心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则天后的存留量;若在天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存储量随时间变化的曲线恰为直线的一部分,其斜率为存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时此刻为“二次复习最佳时机点”.(1)若,求“二次最佳时机点”;(2)若出现了“二次复习最佳时机点”,求的取值范围.
如图,在直三棱柱中,,分别是的中点,且.(Ⅰ)求证:; (Ⅱ)求证:平面平面.
)已知向量=(,1),=(,),f(x)=.(1)若,求的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足,求函数的取值范围.
已知函数f(x)=(m,n∈R)在x=1处取到极值2.(1)求f(x)的解析式;(2)设函数g(x)=ax-lnx.若对任意的x1∈[,2],总存在唯一的x2∈[,e](e为自然对数的底),使得g(x2)=f(x1),求实数a的取值范围.
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,)、A、B在椭圆E上,且+=m(m∈R).(1)求椭圆E的方程及直线AB的斜率;(2)求证:当△PAB的面积取得最大值时,原点O是△PAB的重心.