椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,)、A、B在椭圆E上,且+=m(m∈R).(1)求椭圆E的方程及直线AB的斜率;(2)求证:当△PAB的面积取得最大值时,原点O是△PAB的重心.
已知曲线满足下列条件:①过原点;②在处导数为-1;③在处切线方程为.(1) 求实数的值;(2)求函数的极值.
已知双曲线="1" 的两个焦点为、,P是双曲线上的一点,且满足 ,(1)求的值;(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.
证明以下不等式: (1)已知,,求证:; (2)若,,求证:.
设函数,其中为自然对数的底数.(1)求函数的单调区间;(2)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.
已知是二次函数,不等式的解集是(0,5),且在区间[-1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在正整数m,使得方程在区间内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.