(本小题12分)如图所示,已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线.(I)求曲线的方程;(II)若过定点F(0,2)的直线交曲线于不同的两点(点在点之间),且满足,求的取值范围.
如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点.(1)求证:BM∥平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦.
在中,分别是角A,B,C的对边,且满足.(1)求角B的大小;(2)若最大边的边长为,且,求最小边长.
已知椭圆C的焦点分别为和,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标.
已知命题:“不等式对任意恒成立”,命题:“方程表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.
已知双曲线的两条渐近线与抛物线的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为.(1)求抛物线的方程;(2)过点的直线与抛物线交于不同的两点,若在轴上存在一点使得是等边三角形,求的值.