(本小题满分12分)设为实数,函数.K](1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.
已知点,点,直线、都是圆的切线(点不在轴上)。 ⑴求过点且焦点在轴上抛物线的标准方程; ⑵过点作直线与⑴中的抛物线相交于、两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。
一学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为。 ⑴求该生被录取的概率; ⑵记该生参加考试的项数为,求的分布列和期望。
一个多面体的直观图和三视图如图所示,其中、分别是、的中点,是上的一动点,主视图与俯视图都为正方形。 ⑴求证:; ⑵当时,在棱上确定一点,使得∥平面,并给出证明。 ⑶求二面角的平面角余弦值。
已知数列的各项全为正数,观察流程图,当时,;当时,; ⑴写出时,的表达式(用,等表示); ⑵求的通项公式; ⑶令,求.
(本小题满分14分)已知函数,其中 (Ⅰ)求在上的单调区间; (Ⅱ)求在(为自然对数的底数)上的最大值; (III)对任意给定的正实数,曲线上是否存在两点、,使得是以原点为直角顶点的直角三角形,且此三角形斜边中点在轴上?