设,, 其中是不等于零的常数, (1)、(理)写出的定义域;(文)时,直接写出的值域(2)、(文、理)求的单调递增区间(理5分,文8分);(3)、已知函数,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.例如:,,则 , ,(理)当时,设,不等式恒成立,求的取值范围;(文)当时,恒成立,求的取值范围;
已知函数,若存在,且,使得. (Ⅰ)求实数的取值集合; (Ⅱ)若,且函数的值域为,求实数的取值范围.
若已知直线在两坐标轴上的截距相等,且到直线的距离为,求直线的方程.
如图,四面体中,是的中点,和均为等边三角形,,. (Ⅰ)求证:平面; (Ⅱ)求点到平面的距离.
设是定义在上的偶函数,当时,单调递减,若成立,求的取值范围.
解方程: