设函数的图象在点处的切线方程为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值。
(本小题满分14分)在长方体中, , (1) 求证:∥面;(2) 证明:;(3) 一只蜜蜂在长方体中飞行,求它飞入三棱锥内的概率.
某校高三的某次数学测试中,对其中100名学生的成绩进行分析,按成绩分组,得到的频率分布表如下:
(1)求出频率分布表中①、②位置相应的数据;(2)为了选拔出最优秀的学生参加即将举行的数学竞赛,学校决定在成绩较高的第3、4、5组中分层抽样取5名学生,则第4、5组每组各抽取多少名学生?(3)为了了解学生的学习情况,学校又在这5名学生当中随机抽取2名进行访谈,求第4组中至少有一名学生被抽到的概率是多少?
已知,(1) 若,求tan x;(2) 若,求的最大值.
(本小题满分14分)已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
(本题14分) 某公司将进货单价为8元一个的商品按10元一个销售,每天可以卖出100个,若这种商品的销售价每个上涨一元,则销售量就减少8个.(1)求销售价为13元时每天的销售利润;(2)如果销售利润为336元,那么销售价上涨了几元?(3)设销售价上涨x元()试将利润y表示为x的函数,并求出上涨几元,可获最大利润.