(本题满分15分)已知偶函数满足:当时,,当时,(1) 求当时,的表达式;(2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。(3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。
如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。 (I)求证:A1B∥平面AMC1; (II)求直线CC1与平面AMC1所成角的正弦值; (Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题. (Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图; (Ⅱ)根据频率分布直方图,估计本次考试的平均分; (Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。
已知数列{}中 (I)设,求证数列{}是等比数列; (Ⅱ)求数列{}的通项公式.
设函数。 (1)求不等式的解集; (2)若存在x使不等式成立,求实数a的取值范围。
在直角坐标系xOy中,已知点P,曲线C的参数方程为(φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。 (1)判断点P与直线l的位置关系,说明理由; (2)设直线l与直线C的两个交点为A、B,求的值。