某工厂每月生产某种产品三件,经检测发现,工厂生产该产品的合格率为,已知生产一件合格品能盈利25万元,生产一件次品将会亏损10万元,假设该产品任何两件之间合格与否相互没有影响.(Ⅰ)求工厂每月盈利额ξ(万元)的所有可能取值;(Ⅱ)若该工厂制定了每月盈利额不低于40万元的目标,求该工厂达到盈利目标的概率;(Ⅲ)求工厂每月盈利额ξ的分布列和数学期望.
求下列各函数的导数。 (1) (2)
已知函数()(1) 当a = 0时, 求函数在区间[0, 2]上的最大值;(2) 若函数在区间[0, 2]上的最大值为2, 求a的取值范围.
已知数列中,,(n∈N*), (1)试证数列是等比数列,并求数列{}的通项公式;(2)在数列{}中,求出所有连续三项成等差数列的项;(3)在数列{}中,是否存在满足条件1<r<s的正整数r ,s ,使得b1,br,bs成等差数列?若存在,确定正整数r,s之间的关系;若不存在,说明理由.
已知函数().(1)讨论函数的单调性;(2)若关于的方程有唯一解,求的值.
已知等差数列中,,其前10项和为65(1)求数列的通项公式; (2)求数列的前n项和.