某工厂每月生产某种产品三件,经检测发现,工厂生产该产品的合格率为,已知生产一件合格品能盈利25万元,生产一件次品将会亏损10万元,假设该产品任何两件之间合格与否相互没有影响.(Ⅰ)求工厂每月盈利额ξ(万元)的所有可能取值;(Ⅱ)若该工厂制定了每月盈利额不低于40万元的目标,求该工厂达到盈利目标的概率;(Ⅲ)求工厂每月盈利额ξ的分布列和数学期望.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率; (Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
设数列的前项和为,已知,且, 其中为常数. (Ⅰ)求与的值; (Ⅱ)证明:数列为等差数列; (Ⅲ)证明:不等式对任何正整数都成立.
已知函数(1)判断函数的对称性和奇偶性;(2)当时,求使成立的的集合;(3)若,记,且在有最大值,求的取值范围.
正方体.ABCD- 的棱长为l,点F、H分别为为、A1C的中点. (1)证明:∥平面AFC;. (2)证明B1H平面AFC.
已知向量,(1)若求的值;(2)设,求的取值范围.