已知数列中,,(n∈N*), (1)试证数列是等比数列,并求数列{}的通项公式;(2)在数列{}中,求出所有连续三项成等差数列的项;(3)在数列{}中,是否存在满足条件1<r<s的正整数r ,s ,使得b1,br,bs成等差数列?若存在,确定正整数r,s之间的关系;若不存在,说明理由.
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线3x+y+2=0. (1)求a,b的值; (2)求函数的极大值与极小值的差.
已知函数的最小正周期为 (1)求的值;(2)求函数f(x)的单调递增区间; (3)求函数f(x)在区间[0,]上的取值范围.
已知向量,=(1,2). (1)若,求tan的值; (2)若,,求的值.
海上有A,B两个小岛相距10n mile,从A岛望B岛和C岛所成的视角为60°,从B岛望A岛和C岛所成的视角为75°.试求B岛和C岛间的距离.
已知f(x)是定义在R上的奇函数,且x<0时,f(x)=x2+2x-3. (1)求f(0),f(1);(2)求函数f(x)的表达式.