. (本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点为极点,轴正半轴为极轴建立极坐标系,则曲线的极坐标方程为. (1) 求曲线C的直角坐标方程;(2) 求直线被曲线所截得的弦长.
(本小题满分12分)椭圆G:的左、右焦点分别为,M是椭圆上的一点,且满足=0.(1)求离心率e的取值范围;(1)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5.①求此时椭圆G的方程;②设斜率为的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,问:A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
(本小题满分12分) 设数列的前项和为已知(1)设,证明数列是等比数列;(2)求数列的通项公式;(3)若,为的前n项和,求证:.
(本小题满分12分)已知函数.(1)当时,证明函数只有一个零点;(2)若函数在区间上是减函数,求实数的取值范围
((本小题满分12分)已知圆:.(1)直线过点,且与圆交于、两点,若,求直线的方程;(2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程.
(本小题满分12分) 已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(1)证明:;(2)证明:平面;(3)求二面角的余弦值.