已知双曲线,顺次连接其实轴、虚轴端点所得四边形的面积为8,(1)求双曲线焦距的最小值,并求出焦距最小时的双曲线方程;(2)设A、B是双曲线上关于中心对称的两点,P是双曲线上另外一点,若直线PA、PB的斜率乘积等于,求双曲线方程。
如图,底面是直角梯形的四棱锥,,底面,,,求面与面所成的二面角的余弦值.
如图,在四棱锥中,底面为矩形,侧棱底面,,,,为的中点. (1)求直线与所成角的余弦值; (2)在侧面内找一点,使面,并求出点到直线和的距离.
在棱长为的正方体中,求异面直线与所成的角.
已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点, (1)求证:E、F、G、H四点共面; (2)求证:BD∥平面EFGH; (3)设M是EG和FH的交点,求证:对空间任一点O,有=(+++).
如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量: (1);(2);(3)+.