(本小题满分10分)选修4—1:几何证明选讲如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点(G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H .求证:(I)C,D,F,E四点共圆;(II)GH2=GE·GF.
(本小题满分12分)如图是学校从走读生中随机调查200名走读生早上上学所需时间(单位:分钟)样本的频率分布直方图. (1)学校所有走读生早上上学所需要的平均时间约是多少分钟? (2)根据调查,距离学校500米以内的走读生上学时间不超过10分钟,距离学校1000米以内的走读生上学时间不超过20分钟.那么,距离学校500米以内的走读生和距离学校1000米以上的走读生所占全校走读生的百分率各是多少?
(本小题12分)已知函数. (Ⅰ)当时,把的图像向右平移个单位得到函数的图像,求函数的图像的对称中心坐标; (Ⅱ)设,若的图象与直线的相邻两个交点之间的距离为π,求的值,并求函数的单调递增区间.
(本小题满分13分)已知椭圆()经过点,离心率为,动点(). (1)求椭圆的标准方程; (2)求以(为坐标原点)为直径且被直线截得的弦长为的圆的方程; (3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,证明线段的长为定值,并求出这个定值.
已知等差数列的公差不为零,,等比数列的前3项满足. (Ⅰ)求数列与的通项公式; (Ⅱ)设…,是否存在最大整数,使对任意的,均有总成立?若存在,求出的值;若不存在,请说明理由
已知函数处的切线l与直线垂直,函数 (Ⅰ)求实数的值; (Ⅱ)若函数存在单调递减区间,求实数的取值范围; (Ⅲ)设是函数的两个极值点,若,求的最小值.