已知函数(其中)的周期为,其图象上一个最高点为.(Ⅰ) 求的解析式;(Ⅱ)当时,求的最值及相应的的值.
(本小题满分12分)在某次足球比赛中,甲、乙、丙三队进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为. (Ⅰ)求甲获得小组第一且丙获得小组第二的概率; (Ⅱ)求三队得分相同的概率; (Ⅲ)求甲不是小组第一的概率.
(本小题满分12分)已知函数是偶函数, (1)求的值;(2)求函数的单调区间.
(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2. (I)证明:AB1⊥BC1; (II)求点B到平面AB1C1的距离; (III)求二面角C1—AB1—A1的大小.
(本小题满分10分)已知函数 (1)求函数的最小正周期及当为何值时有最大值; (2)令,判断函数的奇偶性,并说明理由.
(本小题满分12分) 设、分别是椭圆的左、右焦点. (1)若是该椭圆上的一个动点,求的取值范围; (2)设过定点Q(0,2)的直线与椭圆交于不同的两点M、N,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围. (3)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.求四边形面积的最大值.