(本小题满分12分)将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”。设复数为 (1)若集合,用列举法表示集合A;(2)求事件“复数在复平面内对应的点”的概率。
求点A(-3,5)关于点P(-1,2)的对称点、
已知函数 (Ⅰ)求函数的定义域,并证明在定义域上是奇函数; (Ⅱ)若恒成立,求实数的取值范围; (Ⅲ)当时,试比较与的大小关系.
已知等差数列的公差为, 且, (1)求数列的通项公式与前项和; (2)将数列的前项抽去其中一项后,剩下三项按原来顺序恰为等比数列 的前3项,记的前项和为, 若存在, 使对任意总有恒成立, 求实数的取值范围.
已知圆的圆心为,半径为,圆与椭圆:有一个公共点(3,1),分别是椭圆的左、右焦点. (1)求圆的标准方程; (2)若点P的坐标为(4,4),试探究斜率为k的直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.
其底面ABCD为正方形,平面,,且, (1)求证://平面; (2)若N为线段的中点,求证:平面;