已知函数(∈R且),.(Ⅰ)若,且函数的值域为[0, +),求的解析式;(Ⅱ)在(Ⅰ)的条件下,当x∈[-2 , 2 ]时,是单调函数,求实数k的取值范围;(Ⅲ)设,, 且是偶函数,判断能否大于零?
已知二次函数,不等式的解集有且只有一个元素,设数列的前项和(1)求数列的通项公式;(2)设,求数列的前项和.
(本小题满分12分)如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。(1)求证:AB1//面BDC1;(2)若AA1=3,求二面角C1—BD—C的余弦值;(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,求一等品的个数不少于3个的概率。
设函数(1)求的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知,△ABC的面积为的值。
如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD= 60°。 (1)求证:平面PBD⊥平面PAC; (2)求点A到平面PBD的距离; (3)求二面角B—PC—A的大小。(14分)