(本小题满分12分)已知函数(1)当时,求函数在的值域;(2)若关于的方程有解,求的取值范围
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面内. (1)求的大小; (2)求点到直线的距离.
已知函数,,其中为常数,,函数的图象与坐标轴交点处的切线为,函数的图象与直线交点处的切线为,且。 (Ⅰ)若对任意的,不等式成立,求实数的取值范围. (Ⅱ)对于函数和公共定义域内的任意实数。我们把的值称为两函数在处的偏差。求证:函数和在其公共定义域的所有偏差都大于2.
已知椭圆的离心率为,,为椭圆的两个焦点,点在椭圆上,且的周长为。 (Ⅰ)求椭圆的方程 (Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),求证:直线与圆相切.
已知函数,其中为正实数,是的一个极值点. (Ⅰ)求的值; (Ⅱ)当时,求函数在上的最小值.
如图,四棱柱中, 是上的点且为中边上的高. (Ⅰ)求证:平面; (Ⅱ)求证:; (Ⅲ)线段上是否存在点,使平面?说明理由.