(本小题满分14分)已知函数f(x)=ln(x+a)-x2-x在x = 0处取得极值. (Ⅰ)求实数a的值; (Ⅱ)若关于x的方程,f(x)= 在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围; (Ⅲ)证明:对任意的正整数n,不等式ln都成立.
(本小题满分12分)设函数(Ⅰ) 当时,求函数的最大值;(Ⅱ)当,,方程有唯一实数解,求正数的值.
(本小题满分12分)某校共有800名学生,高三一次月考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
(Ⅰ) 李明同学本次数学成绩为103分,求他被抽中的概率;(Ⅱ) 为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并在这6名学生中在随机抽取2名由心理老师张老师负责面谈,求第七组至少有一名学生与张老师面谈的概率;(Ⅲ) 估计该校本次考试的数学平均分。
(本小题满分12分)如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.(Ⅰ) 求证:CE∥平面PAF;(Ⅱ) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
(本小题满分12分)已知数列是等比数列,,且是的等差中项.(Ⅰ) 求数列的通项公式;(Ⅱ)若,求数列的前n项和.
(本小题满分10分)已知函数(Ⅰ)求函数的最小正周期;(Ⅱ)确定函数在上的单调性并求在此区间上的最小值.