(本小题满分14分)已知函数f(x)=ln(x+a)-x2-x在x = 0处取得极值. (Ⅰ)求实数a的值; (Ⅱ)若关于x的方程,f(x)= 在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围; (Ⅲ)证明:对任意的正整数n,不等式ln都成立.
(本小题共12分)已知函数. (Ⅰ)若是函数的极值点,求的值; (Ⅱ)求函数的单调区间.
【改编题】(本小题满分12分)已知圆,点,以线段AB为直径的圆内切于圆,记点B的轨迹为. (Ⅰ)求曲线的方程; (Ⅱ)若直线()与曲线交于不同的两点,,以线段为直径作圆.若圆与轴相切,求直线被圆所截得的弦长..
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率. (1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率; (2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,,点是的中点,且交于点. (Ⅰ)求证:平面平面; (Ⅱ)求二面角的余弦值.
(本小题满分12分)已知函数的图象经过点. (Ⅰ)求的值以及; (Ⅱ)函数的图象向右平移后得到函数的图象,求在上的值域.