(本小题满分13分)设圆C满足:(1)截轴所得弦长为2;(2)被轴分成两段圆弧,其弧长的比为5∶1.在满足条件(1).(2)的所有圆中,求圆心到直线:3-4=0的距离最小的圆的方程.
已知.(1)求函数的最大值;(2)设,证明:有最大值,且.
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P在第一象限,且时,求点M的坐标.
如图,在斜三棱柱中,O是AC的中点,平面,,.(1)求证:平面;(2)求二面角的余弦值.
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.
在中,角的对边分别为,且.(1)求的值;(2)若成等差数列,且公差大于0,求的值.