(本小题满分12分)如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.(Ⅰ)求证:PC⊥平面BDE;(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;(Ⅲ)线段PA上是否存在点Q,使得PC//平面BDQ.若存在,求出点的位置,若不存在,说明理由.
【改编】(本小题满分12分)在中,角的对边分别为,已知且. (Ⅰ)求角的大小; (Ⅱ)若,求△的周长.
如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程; (2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图,在三棱锥中,侧面与侧面均为边长为1的等边三角形,,为中点. (Ⅰ)证明:平面; (Ⅱ)证明:; (Ⅲ)求三棱锥的体积.
【改编】已知圆:与轴相切,点为圆心. (1)求的值; (2)求圆在轴上截得的弦长; (3)若点是直线上的动点,过点作直线与圆相切,为切点.当切线长最短时,求四边形的面积.
【原创】如图,在三棱柱中,侧棱底面, 为的中点,. (1)求证:平面; (2)若,求点到平面的距离.