设命题:函数在上单调递增;命题:不等式对任意的恒成立.若“且”为假,“或”为真,求的取值范围.
如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且.(1)求证:MN⊥AD;(2)求MN与平面PAD所成角的正弦值.
已知x,y,z均为正数.求证:.
在极坐标系中,求点M关于直线的对称点N的极坐标,并求MN的长.
已知a,b,若=所对应的变换TM把直线2x-y=3变换成自身,试求实数a,b.
如图,MN为两圆的公共弦,一条直线与两圆及公共弦依次交于A,B,C,D,E,求证:AB·CD=BC·DE.