如图,在四棱锥—中,,底面为矩形,PD=AD=AB,点E、F分别为PA、PC的中点,(1)求证:EF∥平面; (2)求四棱锥—的表面积
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,底面为直角梯形,,且PA=AB=BC=1,AD=2.(Ⅰ)设M为PD的中点,求证:平面PAB;(Ⅱ)求侧面PAB与侧面PCD所成二面角的平面角的正切值.
(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中它将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是.(Ⅰ)求小球落入袋中的概率;(Ⅱ)在容器入口处依次放入4个小球,求恰好有3个球落入袋中的概率.
(本小题满分l2分)已知函数 .(Ⅰ)求函数的最小正周期及单调递增区间; (Ⅱ)内角的对边长分别为,若求的值.
(本小题满分14分)、已知函数.(Ⅰ)求证:存在定点,使得函数图象上任意一点关于点对称的点也在函数的图象上,并求出点的坐标;(Ⅱ)定义,其中且,求;(Ⅲ)对于(Ⅱ)中的,求证:对于任意都有.
(本小题满分13分)已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(Ⅰ) 求椭圆的方程;(Ⅱ) 过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.