(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中它将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是.(Ⅰ)求小球落入袋中的概率;(Ⅱ)在容器入口处依次放入4个小球,求恰好有3个球落入袋中的概率.
(本小题共12分)已知由正数组成的数列{an}的前n项和为Sn=, ①求S1,S2,S3; ②猜想Sn的表达式,并用数学归纳法证明你的结论; ③求
(本小题共12分)已知函数, ⑴若函数f(x)在区间(0,2)上递减,在[2,+∞)上递增,求a的值; ⑵在①的条件下是否存在实数m,使得函数的图像与函数的图像恰好有三个不同的交点,若存在,请求出实数m的取值范围;若不存在,请说明理由。
(本小题共10分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约。甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求: ①至少有1人面试合格的概率; ②签约人数ξ的分布列和数学期望。
(本小题共10分) 已知集合A=,B=,C= ①求A∩B; ②若(A∩B)C,求m的取值范围。
(本小题满分14分) 已知曲线经过点A(2,1),过A作倾斜角互补的两条不同直线. (Ⅰ)求抛物线的方程及准线方程; (Ⅱ)当直线与抛物线相切时,求直线与抛物线所围成封闭区域的面积; (Ⅲ)设直线分别交抛物线于B,C两点(均不与A重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.