如图,在四棱锥P—ABCD中,PA⊥底面ABCD,底面为直角梯形,,且PA=AB=BC=1,AD=2.(Ⅰ)设M为PD的中点,求证:平面PAB;(Ⅱ)求侧面PAB与侧面PCD所成二面角的平面角的正切值.
如图,椭圆:的右焦点为,右顶点、上顶点分别为点、,且. (1)求椭圆的离心率; (2)若斜率为2的直线过点,且交椭圆于、两点,.求直线的方程及椭圆的方程.
为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在,的数据). (1)求样本容量和频率分布直方图中的、的值; (2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在内的概率.
如图,设四棱锥的底面为菱形,且∠,,。 (1)求证:平面平面; (2)设为的中点,求三棱锥的体积.
(本小题满分12分)已知是正项数列,,且点()在函数的图像上. (1)求数列的通项公式; (2)若列数满足,,求证:.
(本小题满分10分)选修4—5:不等式选讲 已知函数,. (1)当时,求不等式的解集; (2)设,且当时,,求的取值范围.