(本小题满分13分)已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(Ⅰ) 求椭圆的方程;(Ⅱ) 过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.
(本题12分)已知数列的前n项和为满足:.(1)求证:数列是等比数列;(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.
(本题12分)在中,a、b、c分别为角A、B、C的对边,若.(Ⅰ)求角A的度数;(Ⅱ)若,,求边长b和角B的值.
(本题12分)设是等差数列,是各项都为正数的等比数列,且,,(Ⅰ)求,的通项公式;(Ⅱ)求数列的前n项和.
已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(nN*),求数列的前n项和.
设等比数列的前项和为.已知。(1)求数列的通项公式;(2)在与之间插入个数,使这个数组成一个公差为的等差数列.①设=,求;②在数列中是否存在三项,, (其中成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.