已知数列的前n项和为,设数列满足.(1)若数列为等差数列,且,求数列的通项公式;(2)若,,且数列,都是以2为公比的等比数列,求满足不等式的所有正整数n的集合.
已知函数,其中是自然对数的底数,.(1)若,求曲线在点处的切线方程;(2)若,求的单调区间;(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.
已知函数.(1)若是函数的极值点,求的值;(2)求函数的单调区间.
设函数,,函数的图象与轴的交点也在函数的图象上,且在此点有公切线.(Ⅰ)求,的值;(Ⅱ)试比较与的大小.
已知向量,,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。(Ⅰ)求角C的大小;(Ⅱ)求的取值范围;
已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.