(本小题满分12分)已知定点A(,0),B是圆C:(x-)2+y2=16,(C为圆心)上的动点,AB的垂直平分线与BC交与点E.(1)求动点E的轨迹方程.(2)设直线l:y="kx+m" (k≠0,m>0)与E的轨迹交与P,Q两点,且以PQ为对角线的菱形的一顶点为M(-1,0),求△OPQ面积的最大值及此时直线l的方程.
设函数. (1)求的单调区间和极值; (2)若关于的方程有3个不同实根,求实数a的取值范围.
已知复数与都是纯虚数,求复数.
已知函数 (1)求函数在上的最大值与最小值; (2)若时,函数的图像恒在直线上方,求实数的取值范围; (3)证明:当时,
已知是的导函数,,且函数的图象过点. (1)求函数的表达式; (2)求函数的单调区间和极值.
已知,( a为常数,e为自然对数的底). (1) (2)时取得极小值,试确定a的取值范围; (3)在(2)的条件下,设的极大值构成的函数,将a换元为x,试判断是否能与(m为确定的常数)相切,并说明理由.