(本小题满分12分)已知定点A(,0),B是圆C:(x-)2+y2=16,(C为圆心)上的动点,AB的垂直平分线与BC交与点E.(1)求动点E的轨迹方程.(2)设直线l:y="kx+m" (k≠0,m>0)与E的轨迹交与P,Q两点,且以PQ为对角线的菱形的一顶点为M(-1,0),求△OPQ面积的最大值及此时直线l的方程.
已知函数,是的一个极值点.(Ⅰ)求的单调递增区间;(Ⅱ)当时,求方程的解的个数.
已知椭圆的两焦点为,,离心率.(1)求此椭圆的方程;(2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
如图,在底面为矩形的四棱锥中,平面,,是的中点.(1)求证://平面;(2)求证:;(3)是否存在正实数使得平面平面?若存在,求出的值;若不存在,请说明理由.
(1)点在以原点为顶点,坐标轴为对称轴的抛物线上,求抛物线方程;(2)已知双曲线经过点,它渐近线方程为,求双曲线的标准方程。
在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过作轴的垂线,垂足为,连接,(1)若直线与的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;(2)若为的延长线与椭圆的交点,求证:.