在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过作轴的垂线,垂足为,连接,(1)若直线与的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;(2)若为的延长线与椭圆的交点,求证:.
某农户要建造一长方体无盖蓄水池,其容积为48,深为3m,如果池底每平方米造价为80元,池壁每平方米造价为60元,问怎样设计水池能使总造价最低,最低总造价是多少元?
已知向量, (1)求函数的最小正周期; (2)若,求的最大值和最小值。
圆内一点,过点的直线的倾斜角为,直线交圆于两点, (1)当时,求弦的长; (2)当弦最短时,求直线的方程。
(本小题满分12分) 对于函数,若存在R,使成立,则称为的不动点.如果函数N*有且仅有两个不动点0和2,且 (1)求实数,的值; (2)已知各项不为零的数列,并且, 求数列的通项公式;; (3)求证:.
(本小题满分12分) 已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b (b>0)与圆O相切,并与双曲线相交于A、B两点. (1)根据条件求出b和k满足的关系式; (2)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程; (3)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.