正定中学组织东西两校学生,利用周日时间去希望小学参加献爱心活动,东西两校均至少有1名同学参加。已知东校区的每位同学往返车费是3元,每人可为5名小学生服务;西校区的每位同学往返车费是5元,每人可为3位小学生服务。如果要求西校区参加活动的同学比东校区的同学至少多1人,且两校区同学去希望小学的往返总车费不超过37元。怎样安排东西两校参与活动同学的人数,才能使受到服务的小学生最多?受到服务的小学生最多是多少?
已知等差数列的首项,公差,且第2项、第5项、第14项分别是等比数列的第2项、第3项、第4项。 ①求数列与的通项公式; ②设数列对均有成立,求+
在中,角A,B,C的对边分别为,a,b,c,已知向量,且满足. ①求角A的大小; ②若,试判断的形状。
已知函数的图像经过点,,且当时,取得最大值。 ①求的解析式; ②求函数的单调区间。
已知直线的参数方程:为参数和圆的极坐标方程: (1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程; (2)判断直线和圆的位置关系.
已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率. (Ⅰ)求椭圆的方程; (Ⅱ)求的角平分线所在直线的方程; (Ⅲ)在椭圆上是否存在关于直线对称的相异两点? 若存在,请找出;若不存在,说明理由.