如图,在正方体ABCD—A1B1C1D1中,M、N、G分别是A1A,D1C,AD的中点.求证:(Ⅰ)MN//平面ABCD;(Ⅱ)MN⊥平面B1BG.
设分别是椭圆的左,右焦点,过的直线与相交于两点,且成等差数列. (1)求; (2)若直线的斜率为1,求的值.
已知函数在与时都取得极值. (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围.
已知函数. (1)求函数在上的最大值和最小值; (2)求证:当时,函数的图像在的下方.
设是首项为a,公差为d的等差数列,是其前n项的和。记,其中c为实数。 (1)若,且成等比数列,证明:; (2)若是等差数列,证明:。
已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列。 (1)求数列的通项公式; (2)设,求数列的最大项的值与最小项的值。