已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点.(1)求椭圆的标准方程;(2)若A是椭圆与y轴负半轴的交点,求的面积;(3)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.
定义在上的函数满足:对任意、恒成立,当时,.(1)求证在上是单调递增函数;(2)已知,解关于的不等式;(3)若,且不等式对任意恒成立.求实数的取值范围.
设函数(1)求证:是奇函数,在区间上是单调递减函数;(2)若对任意恒成立,求实数的取值范围.
已知关于的不等式的解集是,函数的定义域是,若.求实数的取值范围.
已知二次函数满足:(1)关于的方程的两实根是.(1)求的解析式;(2)设,且在区间上是单调函数,求实数的取值范围.
计算:(1)其中(2)