(本题满分14分)已知函数的图像过点(1,3),且对任意实数都成立,函数与的图像关于原点对称.(Ⅰ)求与的解析式;(Ⅱ)若在[-1,1]上是增函数,求实数λ的取值范围.
(10分)已知集合。(1)当时,求;(2)当,求实数的值。
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。 (1)求a1和a2的值; (2)求数列{an},{bn}的通项an和bn;
14分)如图,半圆O的半径为2,A为直径延长线上的一点,且OA=4,B为半圆周上任意一点,从AB向外作等边,设,(1)将AB的长用表示,(2)将四边形OACB的面积用表示,(3)问当为何值时,四边形OACB的面积最大?最大面积是多少?
(14分) 制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
(14分)等差数列中,前三项分别为,前项和为(1)、求和; (2)、求T=。