(本小题满分14分)设函数.(1)求函数的单调区间;(2)已知,()是函数在的图象上的任意两点,且满足,求a的最大值;(3)设,若对于任意给定的,方程在内有两个不同的实数根,求a的取值范围.(其中是自然对数的底数)
圆内有一点,为过点且倾斜角为的弦, (1)当=1350时,求; (2)当弦被点平分时,求出直线的方程; (3)设过点的弦的中点为,求点的坐标所满足的关系式.
已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1. (1)求证:AF⊥平面FBC; (2)求证:OM∥平面DAF; (3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.
已知中,顶点,边上的中线所在直线的方程是,边上高所在直线的方程是. (1)求点、C的坐标;(2)求的外接圆的方程.
设全集为,集合,. (1)求如图阴影部分表示的集合; (2)已知,若,求实数的取值范围.
已知直线l经过直线3x+4y-2=0与直线2x+y+2=0的交点P,且垂直于直线x-2y-1=0 . (1)求直线l的方程;(2)求直线l关于原点O对称的直线方程。