已知二次函数的图象与轴两交点的坐标分别为(,0),(,0)().(1)证明;(2)若该函数图象的对称轴为直线,试求二次函数的最小值.
小聪、小明准备代表班级参加学校"党史知识"竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:
(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.
(2)求小聪成绩的方差.
(3)现求得小明成绩的方差为 S2小明=3 (单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.
已知:如图,矩形 ABCD 的对角线 AC , BD 相交于点 O , ∠BOC=120° , AB=2 .
(1)求矩形对角线的长;
(2)过 O 作 OE⊥AD 于点 E ,连结 BE .记 ∠ABE=α ,求 tanα 的值.
已知 x=16,求 (3x-1)2+(1+3x)(1-3x)的值.
计算: (-1)2021+√8-4sin45°+|-2|.
小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形 ABCD 绕点 A 顺时针旋转 α(0°<α⩽ ,得到矩形 AB ' C ' D ' ,连结 BD .
[ 探究 1 ] 如图1,当 α = 90 ° 时,点 C ' 恰好在 DB 延长线上.若 AB = 1 ,求 BC 的长.
[ 探究 2 ] 如图2,连结 AC ' ,过点 D ' 作 D ' M / / AC ' 交 BD 于点 M .线段 D ' M 与 DM 相等吗?请说明理由.
[ 探究 3 ] 在探究2的条件下,射线 DB 分别交 AD ' , AC ' 于点 P , N (如图 3 ) ,发现线段 DN , MN , PN 存在一定的数量关系,请写出这个关系式,并加以证明.