已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点(1)当A点坐标为(8,4)时,求直线EF的方程;(2)当A点坐标为(2,2)时,求直线MN的方程;(3)当A点的横坐标大于2时,求△ABC面积的最小值。
如图,在四棱锥中,平面四边形为正方形,点在上的射影为点.(1)求证:平面(2)在棱上是否存在一点,使得平面.若存在,求出的长;若不存在,请说明理由.
中,角A、B、C对边分别是a、b、c,满足.(1)求角A的大小;(2)求的最大值,并求取得最大值时角B、C的大小.
某培训班共有名学生,现将一次某学科考试成绩(单位:分)绘制成频率分布直方图,如图所示.其中落在内的频数为36.(1)请根据图中所给数据,求出a及的值;(2)从如图5组中按分层抽样的方法选取40名学生的成绩作为一个样本,求在第一组、第五组(从左到右)中分别抽取了几名学生的成绩?(3)在(2)抽取的样本中的第一与第五组中,随机抽取两名学生的成绩,求所取两名学生的平均分不低于70分的概率.
已知是公差为的等差数列,是公比为的等比数列.(Ⅰ)若 ,是否存在,有?请说明理由;(Ⅱ)若(为常数,且),对任意,存在,有,试求满足的充要条件;(Ⅲ)若,试确定所有的,使数列中存在某个连续项的和为数列中的某一项,请证明.
已知椭圆:的离心率为,过椭圆的右焦点F且斜率为1的直线交椭圆于两点,为弦的中点,为坐标原点。(1)求直线的斜率;(2)对于椭圆上的任意一点,试证:总存在,使得等式成立.