设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求|AB|;(2)若直线l的斜率为1,求b的值.
因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施.若实施方案一,预计第一年可以使出口额恢复到危机前的1.0倍、0.9倍、0.8倍的概率分别为0.3、0.3、0.4;第二年可以使出口额为第一年的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使出口额恢复到危机前的1.2倍、l.0倍、0.8倍的概率分别为0.2、0.3、0.5;第二年可以使出口额为第一年的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立.令ζ(=1,2)表示方案实施两年后出口额达到危机前的倍数。(Ⅰ)写出、的分布列;(Ⅱ)实施哪种方案,两年后出口额超过危机前出口额的概率更大?(Ⅲ)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为10万元、15万元、20万元,问实施哪种方案的平均利润更大。
如图,在多面体ABCDE中,,,是边长为2的等边三角形,,CD与平面ABDE所成角的正弦值为.(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;(2)求二面角的平面角的余弦值.
(本小题满分12分)设数列满足:,。(1)求; (2)令,求数列的通项公式;
(本小题满分10分)已知函数(1)解关于的不等式;(2)若函数的图象恒在函数图象的上方,求的取值范围。
(本小题满分10分)在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.(1)写出直线的参数方程和曲线的直角坐标方程;(2)求证直线和曲线相交于两点、,并求的值.