已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
已知抛物线的顶点在坐标原点,焦点在轴上,且过点. (1)求抛物线的标准方程; (2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
已知函数 (1)若求在处的切线方程; (2)若在区间上恰有两个零点,求的取值范围.
如图,四棱锥的底面是正方形,棱底面,,是的中点. (1)证明平面; (2)证明平面平面.
已知函数。 (1)当时,求该函数的值域; (2)若对于恒成立,求有取值范围。
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①; ②; ③; ④; ⑤. (1)从上述五个式子中选择一个,求出常数; (2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.