某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.
如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n), (1)点A的坐标是 ,n= ,k= ,b= ; (2)x取何值时,函数y=kx+b的函数值大于函数y=x+1的函数值; (3)求四边形AOCD的面积; (4)是否存在y轴上的点P,使得以点P,B,D为顶点的三角形是等腰三角形?若存在求出点P的坐标;若不存在,请说明理由.
如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β),例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题: (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON= ;∠XON= . (2)如果点A、B在平面内的位置分别记为A(5,30),B(12,120),试求A、B两点之间的距离并画出图.
某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止.结合风速与时间的图象,回答下列问题: (1)在y轴( )内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少小时? (3)求出当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式; (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?
△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位,(1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2;请分别写出A2、B2、C2的坐标.(3)求△ABC的面积.
已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x-4>kx+b的解集.