(本题8分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD ﹦6, AC ﹦8,则⊙O的半径为 ▲ ,CE的长是 ▲ .
解方程
两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.请找出图2中的全等三角形,_____≌____并给予证明(说明:结论中不得含有未标识的字母);证明:DC⊥BE.
如图:在平面直角坐标系中A(-1,5),B(-1,0)C(-4,3).求出△ABC的面积。在下图中作出△ABC关于y轴对称图形△A1B1C1写出A1 、B1 、C1的坐标
『问题情境』勾股定理是一条古老的数学定理,它有多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其它星球“人”进行第一次“谈话”的语言. 『定理表述』请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述). 『尝试证明』以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理. 『知识拓展』利用图2中的直角梯形,我们可以证明<.其证明步骤如下: ∵BC=a+b,AD=, 又在直角梯形ABCD中,BCAD(填大小关系), 即. ∴<.