(本题8分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD ﹦6, AC ﹦8,则⊙O的半径为 ▲ ,CE的长是 ▲ .
解方程:
化简:
如图,正方形的面积为9,点为坐标原点,点在函数的图象上,点是函数的图象上任意一点,边点分别作轴、轴的垂线,垂足分别为、,并设矩形和正方形不重合部分的面积为S.⑴求点的坐标和的值;⑵当时,求点的坐标;⑶写出关于的函数关系式.
如图,在直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B两点,且△ABO的面积为12. (1)求k的值; (2)若P为直线AB上一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形,求点P的坐标; (3)在(2)的条件下,连结PO,△PBO是等腰三角形吗?如果是,试说明理由,如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为(千米),图中的折线表示从两车出发至快车到达乙地过程中与之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中关于的函数的大致图象.