一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为(千米),图中的折线表示从两车出发至快车到达乙地过程中与之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中关于的函数的大致图象.
某校九年级两个班各捐款1800元.已知(2)班比(1)班人均捐款多4元,(2)班的人数比(1)班的人数少10%.求两个班人均捐款各为多少元?
如图,∠ABC=∠ACB,∠BAD=∠CAE,∠ABD=∠ACE,求证:AD=AE.
某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下. (1)求训练后第一组平均成绩比训练前增长的百分数; (2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由; (3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.
如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0). (1)求该抛物线的解析式; (2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF. (1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD. (2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系; (3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.