(1)计算;|-1|--(5-π)0+ (2)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。解:原方程可变形为 ( )去分母,得3(3+5)=2(2-1).去括号,得9+15=4-2.( ),得9-4=-15-2. ( )合并,得5=-17.( ),得=.
如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?
解分式方程:.
(1)计算:÷; (2)分解因式:
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究: 信息读取: (1)甲、乙两地之间的距离为km; (2)请解释图中点B的实际意义; 图象理解: (3)求慢车和快车的速度; (4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围; 问题解决: (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts. (1)求PQ的长; (2)当t为何值时,直线AB与⊙O相切?