已知数列中,,,数列满足:。(1)求 ;(2)求证: ;(3)求数列的通项公式;(4)求证:
(本小题满分12分)已知两地的距离是120km.假设汽油的价格是6元/升,以km/h(其中)速度行驶时,汽车的耗油率为L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?
(本小题满分10分)已知函数的图象过原点,且在、处取得极值.(Ⅰ)求函数的单调区间及极值;(Ⅱ)若函数与的图象有且仅有一个公共点,求实数的取值范围.
(本小题满分10分)已知,, 且(1) 求函数的解析式;(2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.
(本小题满分10分)某港口的水深(米)是时间(,单位:小时)的函数,下面是每天时间与水深的关系表:
经过长期观测,可近似的看成是函数(1)根据以上数据,求出的解析式(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
(本小题满分8分)已知,,当为何值时,(1) 与垂直?(2) 与平行?平行时它们是同向还是反向?