本小题满分12分)已知函数,三个内角的对边分别为. (Ⅰ)求的单调递增区间及对称轴的方程;(Ⅱ)若,,求角的大小.
己知函数(1)求函数的单调区间;(2)设函数,是否存在实数a、b、c∈[0,1],使得若存在,求出t的取值范围;若不存在,说明理由.
已知椭圆的离心率为,其左、右焦点为F1、F2,点P是坐标平面内一点,且其中O为坐标原点。(I) 求椭圆C的方程;(II) 如图,过点S(0,},且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求的分布列和数学期望.
己知函数(1)求函数的最小正周期。(2)记△ABC的内角A、B、C的对边长分别为a、b、c,若,、b=1、c=,求a的值.
第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.(1)若数列:是“兑换系数”为的“兑换数列”,求和的值;(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用和表示它的“兑换系数”;(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.